The structural requirements for ceramide activation of serine-threonine protein phosphatases.

نویسندگان

  • Charles E Chalfant
  • Zdzislaw Szulc
  • Patrick Roddy
  • Alicja Bielawska
  • Yusuf A Hannun
چکیده

The protein phosphatases1 (PP1) and 2A (PP2A) serve as ceramide-activated protein phosphatases (CAPP). In this study, the structural requirements for interaction between ceramide and CAPP were determined. D-erythro-C(6) ceramide activated the catalytic subunit of PP2A (PP2Ac) approximately 3-fold in a stereospecific manner. In contrast, saturation of the 4-5 double bond, producing D-erythro-dihydro C(6) ceramide, inhibited PP2Ac (IC(50) = 8.5 microM). Furthermore, phyto C(6) ceramide, D-erythro-dehydro C(6) ceramide, and D-erythro-cis-C(6) ceramide had no effect on PP2Ac activity. Modification of the sphingoid chain also abolished the ability of ceramide to activate PP2Ac. Further studies demonstrated the requirement for the amide group, the primary hydroxyl group, and the secondary hydroxyl group of the sphingoid backbone for activation of PP2Ac through the synthesis and evaluation of D-erythro-urea C(6) ceramide, L-erythro-urea C(6) ceramide, D-erythro-N-methyl C(6) ceramide, D-erythro-L-O-methyl C(6) ceramide, D-erythro-3-O-methyl C(6) ceramide, and (2S) 3-keto C(6) ceramide. None of these compounds induced significant activation of PP2Ac. Liposome binding studies were also conducted using analogs of D-erythro-C C(6) ceramide, and the results showed that the ability of ceramide analogs to influence CAPP (activation or inhibition) was associated with the ability of the analogs to bind to CAPP. This study demonstrates strict structural requirements for interaction of ceramide with CAPP, and disclose ceramide as a very specific regulator of CAPP. The studies also begin to define features that transform ceramide analogs into inhibitors of CAPP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceramide stimulates a cytosolic protein phosphatase.

A sphingomyelin cycle has been identified whereby the action of certain extracellular agents results in reversible sphingomyelin hydrolysis and the concomitant generation of ceramide. Moreover, a cell-permeable ceramide, C2-ceramide (N-acetylsphingosine), is a potent modulator of cell proliferation and differentiation. We report herein that C2-ceramide, C6-ceramide, and natural ceramides activa...

متن کامل

The Structure and Topology of Protein Serine/Threonine Phosphatases

Structural studies of the two families of protein phosphatases responsible for dephosphorylating serine and threonine residues have revealed that, although these families are unrelated in sequence, the architecture of their catalytic domains is remarkably similar and distinct from the protein tyrosine phosphatases. The diversity of structure within the PPP and PPM families is generated by regul...

متن کامل

Activation of serine/threonine protein phosphatase-1 is required for ceramide-induced survival of sympathetic neurons.

In sympathetic neurons, C6-ceramide, as well as endogenous ceramides, blocks apoptosis elicited by NGF (nerve growth factor) deprivation. The mechanism(s) involved in ceramide-induced neuronal survival are poorly understood. Few direct targets for the diverse cellular effects of ceramide have been identified. Amongst those proposed is PP-1c, the catalytic subunit of serine/threonine PP-1 (prote...

متن کامل

Ceramide in the prostate

The nomenclature for the serine/threonine protein phosphatases was established by Professor Sir Philip Cohen over 30 years ago. (1) At that time protein phosphatase 1 was known to have two small inhibitory proteins (I-1 and I-2) and be regulated by sub-cellular location whereas no protein inhibitor had yet been discovered for the related multi-subunit phosphatase PP2A. That paradigm subsequentl...

متن کامل

Theoretical Thermodynamic Study of Solvent Effects on Serine and Threonine Amino Acids at Different Temperatures

The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) of Serineand Threonine amino acids were theoretically studied at different condition (solvents andtemperatures) by using Gussian o3, software. First, the structural optimization of isolated Serine andThreonine were done in the gas phase by using the Hartree-Fock (HF) level of theory with 3-21G, 6-31G and 6-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 2004